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I. Introduction. Mechanical forces operate on the surface of dielectrics in an elec- 
tric field. These forces are electrical and exist even if there are no free charges because 
of polarization phenomena. These forces are proportional to the gradient of the dielectric 
permeability and the square of the electric field strength. Therefore they are largest in 
regions where the dielectric permeability changes sharply and where strong electric fields 
arise. These conditions occur most often on surfaces of artificial materials which have 
fissures, voids, and various inhomogeneities. 

Here we study the force distribution on a plane surface separating dielectrics with 
different properties, when there is an inclusion on the separating surface. In this manner 
we examine forces which cause polarization effects in a three-component, piecewise homo- 
geneous medium. The cylindrical inclusion, which has a circular cross section, is parallel 
and tangent to the boundary surface. The external electric field is perpendicular to the 
axis of the cylinder. 

This system is characteristic of several insulator designs and, moreover, serves as a 
theoretical model for describing electrophysical processes in several devices (separators, 
for example) in which an electric field acts on dispersed materials. 

The presence of an inclusion at the boundary surface leads to a local inhomogeneity in 
the electric field, which in turn creates a nonuniform force distribution~ Here the inclu- 
sion is subject to the action of an integral force which tends either to "clamp" the inclu- 
sion to the surface or else to "expel" it from the surface. The direction in which the inte- 
gral force acts depends on the relationship among the dielectric permeabilities of all mate- 
rials which form this system. 

The electric field must be calculated before the forces are. In this case, the theory 
of functions of a complex variable can be used to solve the field problem. This method 
allows us to obtain an exact solution to the boundary problem and then to calculate the force 
distribution in the system for general relative dielectric material characteristics:. 

2. Boundary Problem. On the boundary surface between two different dielectric mate- 
rials let there be an inclusion with a dielectric permeability different from that of the 
first two materials. It is assumed that the radius of the regions occupied by the first two 
materials greatly exceeds the radius of the cylinder, in this case the following calcula- 
tional model can be used to study electric phenomena near the inclusion. The first two ma- 
terials occupy half spaces which are separated by a plane; the cylindrical inclusion is tan- 
gent to this plane (Fig. la). Consequently, we are looking at a three-component, piecewise 
homogeneous material which occupies all space. This whole system is located in a homogeneous 
electric field which is perpendicular to the axis of the cylindrical inclusion. Under these 
conditions, the electric field is planeparallel in the system. 

If there are no free charges in each of the three materials, the stationary electric 
field satisfies the equation 

rotE = 0. divD = 0, D = ~E, (2.1) 

where E is the electric field strength vector; D is the dielectric field displacement vector; 
and s is the dielectric permeability. 

The two-dimensional Eqs. (2.1) allow us to introduce functions which are holomorphic in 
the plane of the variables (x, y): 

E(z)=E~ iE~,D(z)=D~-iD~ (z=x+iy). (2.2) 
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Fig. 1 

The vectors E and D are related to the functions (2.2) by the complex conjugate operator, 
which we denote by a bar: 

E = E ( z ) ,  D = D ( z ) .  

The dielectric Sp is constant within each of the three regions Sp (p = i, 2, 3) but 
differs from one region to another. 

If there is purely electrical contact at the boundary of the different dielectrics, the 
normal component of the vector D and the tangential component of the vector E are continuous 
across the boundary surface. Then, from Eq. (2.1), we write these conditions in the form 

Re {n(t)e~E1 (t)} = Re {n(t)e~E~(t)}, 
t ELm_l, m = 2 , 3 .  ( 2 . 3 )  

Im {n (t)E~ (t) } = I m  {n (t) E~ (t) }, 

Here L I and L 2 are the directed boundary contours which separate the plane z into regions Sp 
(Fig. la), and n(t) is the unit normal 

n(t)=t/r ,  t ~ L l ;  n ( t ) = - - t ,  t ~ L f ,  ( 2 . 4 )  

where r is the radius of the circular inclusion. 

The external electric field is specified by its value at a point an infinite distance 
away (as it is approached from region Sl): 

E , ( ~ ) =  Eo=E~- iEo~  = const. ( 2 . 5 )  

If the infinitely removed point is approached from region S~, then 

E~ (oo) = I [(q + ~)  & + (q _ e~) ~0]. (2  6) 2a---~ 

Equation (2.6) follows from Eqs. (2.3) and (2.4) for m = 3, with a consideration of the condi- 
tion (2.5). 

Thus, finding the function E(z) = {El(z), Ef(z), Ea(z)} is reduced to the boundary prob- 
lem [(2.3) and (2.4)] and one of two equivalent auxiliary conditions (2.5) or (2.6). Based 
on physical considerations, the function E(z) at z = r can be represented as an integrable 
singularity. 

We use (2.4) to write the boundary conditions (2.3) in inverse form 

elEl ( t )+ etEl (t)= eaEa(t) + e3Ea(t), 

E~ ( t ) -  E, (t) = Ea(t) - Ea (t). 

Here it is assumed that t = rf/t for 

t ~ L1; 

t~ L 2. 

t~Ll and thus that n(t) = r/t. 

then 

(2.7) 

One of the functions, for example El(t), can be excluded from each pair of Eqs. (2.7); 

2qE~ (t) = (q + e2) E2(t ) -- (~ -- %) E~ '('ti, t ~ L,: (2 .8 )  

2s ,E,( t )=(ei  +e3)Ea(t)--(e~--ea)E3(t). t=-Lf. 
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In future calculations it is convenient to operate with relative dielectric permeabili- 
ties, which we define as follows: 

~ ' - ~  i < A 1 ~ < i  (m = 2, 3). (2 .9)  Aim - -  ~i + em ~ 

By u s i n g  Eqs .  ( 2 . 9 ) ,  t h e  b o u n d a r y  r e l a t i o n s h i p s  ( 2 . 8 ) c a n  be w r i t t e n  in  an e q u i v a l e n t  f o r m  

( I + A I ~ ) E I ( t ) = E ~ ( t ) - A i ~  T E~(t), t ~ L t ;  ( 2 : 1 0 )  

( i+Als)Et ( t )=E~( t ) - -Al~E3( t ) ,  tEL2,  

and the condition (2,5) or (2.5) at infinity takes =he form 

E~ +A'3E" (2 .  II ) 

Thus ,  t h e  c a l c u l a t i o n  o f  t h e  e l e c t r i c  f i e l d  in  t h i s  i nhomogeneous  s y s t e m  i s  r e d u c e d  t o  
solving Eqs. (2.10)and (2.11), which are a particular case of the generalized Riemann bound- 
ary problem (now this problem is often called the R-linear conjugation problem). 

3. Electric Field. The boundary problem formulated in the previous section has an exact 
solution, which can be obtained by the method of conformal mapping and the principle of ana- 
lytic continuation, The solution to Eqs. (2,10) and (2.11) is discussed in the Appendix. 
The final results are presented below. 

General Solution. The components of the electric field in the system of coordinates 
shown in Fig. la are defined as follows: 

- - T r ]  -- A1 a 
k=l  

k=J 

E~ (z) --  E~ + ~,So Eo (1 + A~3) --~2 !~ ~ z - - - - 7 -  r , Rez > r. 
�9 i - -  A13 At3 f t = l  

As can be seen, the solution is represented as a series whose components are expressions 
for plane dipoles. One series of dipoles is located on the segment [0, r) of the real axis, 
and the other at its mirror point relative to the point x = r on the segment (r, ~fr]. As 
the order number k increases, the dipole coordinates concentrate at the point x = r (the tan- 
gent point of the inclusion and the boundary separating the different dielectrics). 

Particular Solutions. Several simple solutions for two-component systems can be ob- 
tained from the general Eqs. (3.1). 

i. If ~i = ~3 (513 = 0), Eqs. (3.1) are transformed to 

Z ~ 

T h i s  i s  t h e  s t a n d a r d  s o l u t i o n  t o  t h e  p r o b l e m  o f  t h e  e l e c t r i c  f i e l d  o f  a d i e l e c t r i c  c y l i n d e r  o f  
p e r m e a b i l i t y  r immersed  i n  an unbounded d i e l e c t r i c  medium o f  p e r m e a b i l i t y  g i ,  i n  an e x t e r n a l  
homogeneous  e l e c t r i c  f i e l d  E 0. 

2. I f  s I = s 2 (~12 = 0 ) ,  t h e n  t h e  s o l u t i o n  f rom Eqs .  ( 3 . 1 )  i s  

E t ( z ) : E  o, R e z < r ;  E~(z)= f ~  A~a~~ Rez:>r.  

These expressions define the homogeneous electric field in a medium consisting of two 
dielectrics, which fill half spaces separated by a plane. The resultant expressions coincide 
with Eqs. (2.11), as they should. 

Approximate Solutions. The dipole moments in Eqs. (3.1) contain parameters (hlfA!3) k 
and i/k '2, which decrease rapidly in absolute value as k increases. Therefore the terms of 
the dipole series in Eqs. (3oi) die off rapidly with increasing order. In practical calcula- 
tions this allows a small number of terms to be retained in the series. In this case the at- 
tainable accuracy can be estimated as follows. 
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Let Es = Es + Qs s = I, 3, where the Ezm(Z) are partial sums of m terms of 
the corresponding series (3.1). Then the following estimates are valid for the other terms 
Qs in the region Iz - r I < r: 

If+ I 
lQlz(z)] ~< I Eol I A,. ]A: t  t (1 + lA, al) 

i - l AI2AI3 I 

1 O.~ (z) l ~< I Eo I 1%~,~ 1 ~+I (~ + A~) - 1 % %  1 " ( 3 . 2 )  

.~,lA,,Iz+~lA,alz(t+A~a) t z _ r l < r .  10a) (z)]<~ l ~o I" "" t 21X~Aaa I .......... ' 

A coarser estimate away from the point z = r has the form 

4 t+l 

IQ~(z) I<IEoI ( i+A,2)  - A '+'6 /%12 13 7 

tQa,(z) I < IEol ( t  +A,3)t&~l~+l lA,a l tS ,  

where 

6 = rain } ,  (l + t) 2 (t - -  [ a~2A;3 I) " 

( 3 . 3 )  

[ z -  rl >~ r. 

(3.4) 

For qualitative analysis of electric processes in the system (and sometimes also for 
obtaining required quantitative relationships), it is sufficient to use the first approxi- 
mation of Eqs. (3.1), which consider dipoles only at the points z = 0 and r = 2r: 

-EoA l~r ~ EoAx2~,13r2 Eli(z)=Eo ~ }-~--~-~, ]zl>r, t l e z < r ;  

%%:2 ] (3.5) 
E~I (~) = Eo (1 + A12) i + ~ - -  2-K(~ j ,  1 ~ 1 < r; 

E o + AlaE- o r ~ 
E a ( z ) =  t - -A1 ~ .. . . . .  ~VoAl~(t -}-A13 )-z~, t l e z > r .  

The accuracy of this approximation can be determined from Eqs. (3.2)-(3.5) for s = 1 in the 
corresponding region. 

The features in the electric field image in the system under study can be estimated from 
how this field changes along the x-axis. The corresponding behaviors for the relative elec- 
tric field strength Ex,y/IE01, where IEoI is the absolute value of the external electric 
field strength function, are shown in Fig. 2 for the case where the relative dielectric 
strengths of an inhomogeneous material are e r = {erl, st2, Er3} = {9, i, 3} (the curves are 
constructed for relative dielectric strengths r = e/s0, where go is the dielectric constant). 
In this example the external electric field strength function E 0 has a component only along 
the x-axis (0 = 0, where 0 is the angle between E 0 and the x-axis) in Fig. 2a, and along the 
y-axis in Fig. 2b (8 = ~/2). Under these conditions, the relationships 
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E~=Zx(x), E y = 0  ' for 0 = 0 ;  

E . = 0 ,  ~ v = E y ( x ) ' f o r  0=~/2 .  

are valid due to the structural symmetry of the system on the x-axis. 

The solid curves in Fig. 2 are constructed from the exact Eqs. (3.1), while the dotted 
ones show the same functions calculated using the approximate Eqs. (3.5); the dashed curves 
show the system boundaries. 

When we examine the curves in Fig. 2, our attention is turned to the sharp change in the 
electric field strength near the point where the cylindrical body is tangent to the boundary 
plane between the dielectrics. Physically, this behavior of the electric field strength 
functions is explained by the inhomogeneous structure of the material at the contact zone 
between the dielectric materials with different permeabilities. From a theoretical view- 
point, the features in the electric field in this zone can be explained by the fact that the 
tangent points of the cylindrical body with the plane boundary is a concentration point of 
dipoles in the series used to represent the solution to the boundary problem. 

In order to obtain more exact calculations directly next to the point z = r, consider- 
ation of (3.2) shows that we must take a larger number of terms in the series (3.1). Out- 
side this region the exact and approximate values almost coincide, according to Eqs. (3.3) 
and (3.4). 

One more characteristic feature of the electric field in the system should be noted. 
We know that the field is also homogeneous inside an isolated dielectric isotropic cylinder 
located in a transverse homogeneous electric field. This trend arises in this case - in most 
of the cylindrical body the electric field is close to homogeneous and becomes significantly 
inhomogeneous only near its tangent point with the boundary plane. 

4. Forces in the Electric Field. According to the initial conditions, there are no 
free charges in this inhomogeneous system. It is also assumed that no electrostriction ef- 
fects occur in the dielectric materials. In this case polarization processes are the only 
reason that forces arise in the system. The force density vector i in inhomogeneous dielec- 
trics is determined by the formula [i, 2] 

= ~ E~gr ade. (4 .1 )  f 

I f  the  d i e l e c t r i c  p e r m e a b i l i t y  does not  change smoothly but i s  p iecewise  homogeneous, 
as i t  i s  in  t h i s  sys tem,  then the  f o r c e  f a c t s  on ly  on s u r f a c e s  s e p a r a t i n g  d i e l e c t r i c  ma- 
t e r i a l s  wi th  d i f f e r e n t  p e r m e a b i l i t i e s .  The f o r c e  v e c t o r  f c o i n c i d e s  wi th  the  normal to  the  
boundary s u r f a c e  and i s  expressed  by [2]:  

f =yn(~(_~ ~(+)) (-)t q- .E~-)n =~n(~(_)--e(+>) E~+)t-L~(+)E(+),~ . (4 .2 )  s(+) ' e(_) 

Here n is  the un i t  normal vector  to the boundary surface and is  pointed in to  the mate r ia l  
whose parameters are noted by the subsc r ip t  (+) ;  E(+) and g(_) are the d i e l e c t r i c  permeab i l i -  
t i e s  of the adjacent d i e l e c t r i c s ,  and E ~ .  and E( •  are the normal and t angen t i a l  components 
of the e l e c t r i c  f i e l d  s t rength  on the boundary. According to Eq. ( 4 .2 ) ,  the e l e c t r i c  f i e l d  
strength vector must be known on the boundaries in order to determine the vector f.. This 
value of the field is known from Eq. (3.1); here, in order to go from the terms E(z) used to 
represent the solution to the vector E, which figures in Eq. (4.2), it is necessary to make 
use of the simple relationships 

E~ = Re (E~) = Re (En) = (En + E~)/2,  

E, = - I m  (Eft) = I m  (En) = (En -- E~) /2L 

where n is the unit normal, and the bars indicate the complex conjugate as before. 

In order to illustrate how the forces act on the system, Figs. 3 and 4 show the results 
of calculating the force density distribution on the boundaries, when the electric permeabili- 
ties are Sr = {9, I, 3} and e r = {i, 5, 9}, and the function E 0 has the argument e = ~/4. 
The figures show curves of the force density as relative quantities 

I , = ] / ~ ,  ~ = % l e 0 1  ~. (4 .3 )  

Depending on the relationship between the dielectric permeabilities E 2 of the inclusion 
and ~i of the surrounding material, the inclusion is acted on by compressive forces (for 
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~I > E2, Fig. 3) or tensile forces (for sz < ~2, Fig. 4). As can be seen, these forces tend 
to pull the inclusion along the vector of the external electric field strength. 

The plane boundary between the dielectrics causes a nonuniformity in the distribution 
of the force density f on the surface of the inclusion, which leads to a integral force 

2X 

F--J"/,dO, (4.4) 
0 

where the force f, is defined by Eqs. (4.2) and (4.3). 

The force F is directed normal to the plane boundary between the different dielectrics 
(with positive or negative sign) in all cases (for any orientation of the external electric 
field and for any dielectric material parameters). If E I > s2 (as in Fig. 3), then the inte- 
gral force acts to tear the inclusion from the boundary plane. However, if e I < g2 (see Fig. 
4), then the force F is pointed in the opposite direction and its action tends to trap the 
inclusion at the boundary surface. 

Analysis of Eqs. (3.1) and (4.1)-(4.4) shows that the integral force becomes larger, the 
larger the difference between the dielectric permeabilities of the materials that comprise 
the inhomogeneous system. This is confirmed by actual calculations. 

The inhomogeneous system models electrical processes under several electrophysical con- 
ditions. Actual conditions close to the modeled ones exist, for example, in systems where the 
solid dielectrics are bound by liquids or gases which contain included impurities. 

Thanks to the analytic solution of the field problem, the force problem is simplified 
and requires only simple algebra. Calculations, done over a wide range of system parameters, 
made it possible to bring out all the features of the forces, which reduce to the following: 

i. The force density vector f at the boundary of the different dielectrics as always 
pointed to the dielectric which has the smaller permeability. 

2. The forces on the surface of the inclusion are distributed such that they act (by 
compression or tension) to pull the inclusion along the external electric field 
vector E o . 

3. The integral force vector F always acts normal to the plane boundary between the 
dielectric materials (which have a positive or negative sign) and is independent of 
the direction of the external electric field E 0. 

4. The integral force vector F is directed opposite to the force density vector f on 
the plane boundary between the dielectric materials. 

5. The integral force F increases as the values of the relative parameters Az2 and 413 
increase. 

It should be noted that conclusions 1 and 2 follow from the overall physical assump- 
tions; in particular they follow from Eqs. (4.2). Details of how the forces act are not that 
obvious and their determination requires a complete calculation of the electric field in the 
system and then a subsequent calculation of the force density distribution at the boundaries. 

Appendix. Below we give an exact solution to the boundary problem (2.10) and (2.11), 
which are used to calculate the electric field in this system. The method of conformal map- 
ping is used for the solution, which reduces the problem to a single functional equation. 
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This can be solved in closed form, which makes it possible to obtain explicit values for the 
field in all components of the system. 

The linear fractional function 

z =  T ( ~ ) - - - - r ~  ( ~ = ~ + g ~ l )  (A .1 )  

is used to map the z plane into the ~ plane. Here the contours L: and L 2 transform to the 
straight lines X: = {~: Re~ = 0} and X~ = {~: Rer = I}, respectively, and the region Sp is 
mapped to the region ~p (p = I, 2, 3), as shown in Fig. i. 

The reverse mapping of (A.I) is obtained by the function 

= T -~ (z) = ~ + r 
- i - r "  ( h . 2 )  

The boundary conditions (2.10) for the function f(~) - E(T(~)) take the form 

( A . 3 )  
( t  q-A~,3)fi ('t-j = ]3 ( ~ ) -  Alaf3("c), "~ ~ Z~. 

One of the equations 

E 0 q- AxaE o 
f t ( l ) = E  o, f : , ( l)--  l_~Xa (A.4) 

must be considered along with the boundary conditions. Equations (A.4) follow from (2.11); 
they result from each other and the second Eq. (A.3), The problem (A.3) and (A.4) must be 
solved from the class of functions which have only integrable singularities at a point in- 
finitely far away [T-Z(r) = ~]. 

The function fz(~) can be represented as 

fl ($) = 11 + (~) -{- 17 (~), (A..5) 

where  t h e  f u n c t i o n  f1+(r [o r  f : ( ~ ) ]  i s  h o t o m o r p h i c  on t h e  h a l f  p l a n e  Re r  < 1 [o r  Rer  > 0 ] .  
In  o r d e r  t o  o b t a i n  a s i n g l e - v a l u e d  r e p r e s e n t a t i o n  o f  (A.5)  we t a k e  

/ + ( i ) = 0 ,  i f ( l ) = E  o. (A .6 )  

[ w i t h  a c o n s i d e r a t i o n  o f  ( A . 4 ) ] .  

By u s i n g  ( A . 5 ) ,  Eq. (A.3)  i s  t r a n s f o r m e d  t o  t h e  form 

( t  + a , , )  l~" (~) - ]~ (~) = - a,~ ~ I ,  00 - ( i  + ~ , )  i F  ( %  �9 ~ ~,~; 

(i + A,~) 17 (~) - -  f~ (~) = - -  A~I~ (~) - -  ( i  + A,~) h + (% �9 ~ ~,~. 

From this it follows from the principle of analytic continuation that the functions 

I (l + A,0 f~- (~) --  f~ (~), Re ~ <~ 0; 
= ( ~ ) ~  + (0  [ _  (~ + A~) f;- (~) - A~ ~ f~ ( -  ~), Re ~ > o, 

(A .7 )  

are holomorphic in the r plane, because the function r/T(r = (~ - i)/(~ + i) is holomorphic 
for Re r > 0. The functions (A.7) can have only integrable singularities at infinity; there- 
fore, based on Liouville's theorem, 

~ ( r  Cl = const, ~ ( ~ ) ~ C 2 =  const. 

The constants C l and C 2 are determined by substituting Eqs. (h.4) and (h.6) into Eq. (h.7), 
which leads to the following result: 

+ (0 = --  (l + a~) Eo, V (~) = --  A,~ Eo + A~aEo (A. 8) 
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Two pairs of identities can be obtained from Eqs. (A.I) and (A.8): 

]2 (~) - ( l  + AI~.)/~- (~) - -  ( i  + a:~) E0, Re ; < 0; 
" r \ 2 - -  

(A.9) 
Zo § &,,E- 

E o§ Re~< I. A~J, (2 -- ~-) + (i + A:3 ) /~  (~) -- A:a i -- a~3 ' 

According to Eqs. (A.5) and (A.9), 

/:({) = / 7  (~) +/7~ (~), 0 < R e ~ < i ;  

/.. (;) = (i + a,~) ~ (~) + (l  + A:~) Eo Re ~ < o; 

L'o @ A,aEo Re ~ ~ t. 

Consequently only two functions, f+(~) and fi(~), have to be found 
functions fp(r (p = i, 2, 3). 

First we exclude the functions f=(~) and f3(~) from Eqs. 
transformation relative to the lines %1 and %2, respectively, 
of identities (A.9) transforms them to 

/~ ( -  ~.3 - (t + A:~)/? ( -  ~-) = (l + =h2) Z'o, R~ ~ :~ 0; 

(t + ~ . )  U~ (~) + ~,:~ ~---4-7/ "- ( -  ~) = (i : -  

l~ ( 0  - -  (t + ~ )  IF (;) = '~:~ : _ ~ , 

E~ + A~aE~ Re ~ ~ t. 

It follows from Eq. (A.II) that 

/ l < ~ > + A , , ( ~ )  :(-- ~) ---- Eo -- A:, ,;:_ i Z'o, R e ~ 0 ;  (A.12) 

A . V ( ;  ) + I ? ( 9 - - ~ )  = ~ . r  ~ >  I, 

By excluding the  funct ion f : (~ )  from (A.12) we obtain 

"~'-- i~ ': ( ~ ) ~  E~,, Re~ ~ 1. 

Now, by replac ing  ~ by 2 - : and going to complex conjugate q u a n t i t i e s ,  we 

r-- l~ L- 

The expression (A.13) is  a func t iona l  equat ion relat i{re to the unknown funct ion f~(~).  

Sequential substitution of 

~--31~ ~~+ (~ - 2) = ~M,~ (~--s, [E,, +/~+ (; - ~)], 

into the 

in order to find the 

(A.9). Use of the symmetry 
in the first and second pair 

(A.10) 

(A.II) 

finally obtain 

(A.13) 

right side of (A.13) leads at the n-th step to 

/+ (;) = E0(;-- i)"~ (a,M,d I ~ 2 --  ~ -  l) A+ (~ - 28), 

R e z ~ l .  

(A.14) 

As n increases without bound, the last term on the right side of Eq$ (A.14) tends to zero. 
Actually, it follows from the second Eq. (A.10) that the function f:(~) has an integrable 
singularity at infinity, which means that the estimate 
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I fF(~-- 2n)l<lE- 2n1% 
i s  v a l i d  fo r  s u f f i c i e n t l y  l a r g e  n, where a < 1; t h e r e f o r e ,  f o r  Re~ ~ 1, 

(A"A'~)'~ ( : _ ,  )2 + 2,~) <[A~A~ t---2-n2n- i Jl (~-- [ =l~-llmll-2nl= .- I$--I--2n[ 2 +0 

as n § ~ for any finite value of ~. Consequently, Eq. (A.14) tends to 

(~a'3) ~ 
]~(~) = E0([-- i) ~ . R e z <  1 (A. 15) 

~=I ( ~ -  2k --I) 2' 

in the limit as n § ~. Therefore, for these values of ~, the series (A.15) is bounded by 
the converging numerical series 

~ (~12A13) h 
h=1 (2k )  ~ ' 

which thus  p rov ides  one of the  two d e s i r e d  f u n c t i o n s .  

The second unknown f u n c t i o n  f~(r  i s  de termined from the  second Eq. (A.12).  S u b s t i -  
t u t i n g  Eq. (A.15) i n t o  t h i s  equa t ion  g ives  

c o  

f7 ($) ---- Eo-- ~-13($-- , P, ez ~ t. (A. 16) 
�9 h=1 ( ~ + 2 k - - t )  2 

Equat ions  (A.15) ,  (A.16),  and (A.10) make i t  p o s s i b l e  to  w r i t e  e x p l i c i t  e x p r e s s i o n s  f o r  
the  f u n c t i o n s  fD(5) ,  P = 1, 2, 3. Then, r e v e r s e  mapping of  (A.2) i s  used in Sec. 3 to  f i n d  
Eqs. (3 .1)  fo r  [he e l e c t r i c  f i e l d .  

1. 
2. 
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GENERATION OF ELECTRICAL PULSES DURING FORMATION AND DEVELOPMENT 

OF CURRENT-DRIVEN INSTABILITIES IN PLASMAS 

P. I. Zubkov (fOC 533. 952 

In a current-carrying circuit left to itself, the electromagnetic forces act to increase 
the inductance. This is a consequence of the general principle that a system evolves in the 
direction of reduced potential energy. Initially stored in the electromagnetic field, the 
potential energy is converted into internal and kinetic energy of moving conductors. A cur- 
rent-carrying circuit is unstable with respect to increasing inductance. 

Convincing examples of practical devices that operate on this principle include z- and 
e-pinches, rail guns, electrodynamic accelerators of plasmas and solids, plasma dynamic open- 
ing switches, etc. As will be shown below, instabilities with respect to increasing induc- 
tance are of considerable importance in plasma opening switches. 

When a current-driven instability develops, an inductive emf that is controlled by the 
currents and voltages in the circuit appears on the portions of the circuit with increasing 
inductance. The possible generation of electrical pulses by changes in the inductance under 
the action of intrinsic currents has been discussed from this point of view [I]. This anal- 
ysis was carried out for motion in specified plane and cylindrical geometries. It was shown 
that in a formal mathematical sense, the emf increases without bound in a z-pinch under 
these assumptions [i]. This method may be useful for generating voltages and interrupting 
currents. 
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